Live Blood Under the Microscope

It's true that an individuals life and health energies show in the drops of their blood. Using high powered video microscopes to evaluate the shapes and other properties of individual blood cells can be very revealing. Often things are noticed that are never seen using traditional methods of blood screening.

In itself, live blood screening with microscopy is not a diagnostic procedure. However, it can often point you in a direction to take for further diagnostic testing. For our purposes, we simply want to view the "terrain" of the blood to catch a glimpse of the overall "toxic load" and consequent state of health of our client.

Of the information that follows in this section, some is found in medical physiology textbooks and is taught in hematology and microbiology classes. Some of the information (particularly that which deals with nutritional aspects of blood morphology) is usually taught to health professionals through continuing education and alternative type programs. As traditional medical and dietetic training is generally inadequate where disease prevention is concerned and often based on incorrect assumptions about health, these alternative programs serve as a much needed venue to disseminate this information. It can be controversial. I say controversial because the definitions, findings, causes, and correlation's are often the subject of debate. On one hand there is traditional hematology, on the other is standard hematology overlaid on a nutritional framework with different ways of thinking about health and disease. There are varying perspectives of what the observed morphology actually means. Some are correct, some are not.

Further complicating matters, many microbiologists seem to work in a vacuum. Three microbiologists may see or have discovered the same thing, but they each call it by a different name. Going further, some biologists have entertained entirely different philosophies.

When the serious student of health begins to dig into all aspects of healing, he inevitably unfolds the theories of disease and concepts of microbial pleomorphism as espoused by individuals like Antoine Bechamp and Guenther Enderlein. Enderlein was a German microbiologist who researched deeply in this area which I refer to as the German biological perspective. For purposes of understanding blood morphology as espoused by some microscopists/biologists, this area of study is necessary. Unfortunately, American hematology and medical students do not get this perspective. Consequently, the American health system is ignorant of some core historical biological thought provoking ideas and that could potentially incubate new discoveries.

This following material takes you into these areas. The intent is to give you a solid foundation in which you can further pursue each area as you desire. The majority of what follows has explanations from standard hematology, expanded views from the medical perspective, and associated thinking and suggested tests that may be run by a traditional medical practitioner (and some tests used by alternative practitioners) if he/she were to have a specific microscopic finding. During the workshop, you will have the benefit of instructor clarifications and expanded insights. Additionally, I've included a brief overview of the "alternative" pleomorphic biological perspective for most of the microscopic findings.

Predominant blood references:  "Dailey's Notes on Blood", by John F. Dailey; "Living Blood and its Ultrastructure"' by Marcel Bessis; course notes from various workshops;  "The Internist" June 1996, Position Statement of the Council on Diagnosis and Internal Disorders of the American Chiropractic Association.

NOTE: On this website, the material has been seriously edited and is a fraction of what is provided in class. We did not include any biological perspective of Guenther Enderlein as research over the past few years has relegated the basic theories to be a historical reference in biology that in many respects is incorrect - thought it is still being taught as science by some microscope schools. Though we integrate, expand and explain these theories in class, we did not want to send readers of this material down a road which needs much clarification.


Blood is the fluid that circulates through the heart, arteries, capillaries, and veins. It is the chief means of transport within the body. It transports oxygen from the lungs to the tissues, and carbon dioxide from the tissues to the lungs. It transports nutritive substances and metabolites to the tissues and removes waste products to the kidneys and other organs of excretion. It has an essential role in the maintenance of fluid balance.

Blood varies in color from an oxygenated bright red in the arteries to a duller red in the veins. The total quantity of blood within an individual depends upon the body weight. A person who weighs 150 lbs. has about 5 quarts of blood in the body.

Plasma accounts for about 55 percent of the total volume of the blood. It consists of about 92 percent water, 7 percent proteins, and less than 1 percent inorganic salts, organic substances other than proteins, dissolved gasses, hormones, antibodies, and enzymes.

The suspended particles of the blood comprise the other 45 percent of the total volume of blood. They include erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes).

Red blood cells originate in the red bone marrow and are stored in the spleen which acts as a reservoir for the blood system. The average red cell has a life of 110 to 120 days. Aged red cells are ingested by macrophages in the spleen and liver. The iron is reclaimed from the dead red cells and then transported by the plasma back to the marrow where it is incorporated into new red cells. The great majority of the cells in the blood are red blood cells.

Leukocytes (white blood cells) originate in the bone marrow and lymph tissue. White blood cells are actively engaged in the destruction or neutralization of invading micro-organisms and are then transported to sites of infection and inflammation. For this reason, their life span in the blood in usually very short (a life span of up to 14 days). When infection is present their number are greatly increased and they also become more mobile and move back and forth between the blood, lymph, and tissues.

White blood cells come in various shapes and sizes:

Granular appearing white cells are known as Neutrophils, which make up about two thirds of all white blood cells; Eosinophils which make up about 2 to 4 percent of the white cell count; and Basophils - which make up less than 0.5 per cent of the white cell count.

Non-granular appearing white cells are known as Lymphocytes. These are the natural killer cells and make up about 25-30% of all white blood cells. Two types of lymphocytes T's and B's are involved in immunity.

Platelets or thrombocytes are small, clear, disk-shaped bodies about one-third the size of red blood cells or even smaller and play an important role in blood coagulation and clot formation. One of the most important properties is its self-sealing ability to repair a leak in a blood vessel. The life span of a platelet ranges from eight to ten days.


When the blood is brought up on the microscope for study, it is a good time to also take a reading of your clients Saliva pH. You'll remember from the Rot & Rust Workshop (the pre-training session to this course) that pH controls many things in the body. If the pH is off, many bodily processes can also be off. Also, if internal parasite activity (endobiosis) is seen in the blood, it could be that the pH in the blood has been thrown off for some time and it's something you would definitely want to correct. We'll learn more about this when we cover biological terrain.

Hours since last meal ______

Saliva pH _____

In doing this little test, it becomes an appropriate time to introduce simple dietary/pH education. It is also the time to introduce the concepts of "biological terrain" and can set up the patient for more thorough urine/saliva testing. (This assumes you have not already pre-educated your patient and have not yet included the urine/saliva testing as part of your work-up.)


The red ball test was something given to soldiers during the civil war. If a soldier said he was too sick or weary to fight, he would get his finger pricked with a pin to see if the blood beaded up on the finger or if it was runny with no beading. If it beaded up, the soldier was considered healthy and was given his weapon and sent into battle. If there was no bead, he was sent to the recuperation tents. You can make note of a quick "red ball test" when a drop is taken from the finger.

When a drop of blood appears on the finger it should bead up.

If the ball is absent it can indicate:
-low protein due to: lack of protein in diet,
-poor digestion (lack of digestive enzymes),
-kidney problems,
-anemia (low blood iron.)


It is absolutely fascinating to watch the play of life at the cellular level. When you see the indicated item or activity listed below, the contributing factors or causes shown are correlated to have been found in most cases. Certainly variations may occur in individual situations. Reading live blood in this fashion can really be considered more of an art than a science.

Remember: You are not learning a diagnostic procedure for any medical malady. A medical diagnosis cannot be made by looking at live blood under a microscope. The real benefit of this procedure is to demonstrate in a very visual way the realities of health to your client which will make a lasting impact and will lock them into understanding and complying with your suggested protocol. That is all.

The red cells are predominately uniform in size and shape and appear as round circles on a gray background. The center of the cells are lightened somewhat and slightly off white in color. They reside freely in their own space, not overlapping or sticking together, but gently bouncing off each other.

The white cells (neutrophils) are about as large as two red cells and have a rather grainy appearance with 3 to 4 dark, irregularly shaped lobes inside the cell. Rather than being round, they display many different shapes and are active and moving, In normal blood there are about 700 to 1000 red cells to every white cell.

The blood serum surrounding the cells is clear without parasites, bacteria, clots, or other undesired floating masses. Platelets are free floating.

NOTE: Concerning the names given to the items that follow, the most widely known terms with hematological reference have been listed first. Since we are weave alternative viewpoints behind blood elements, the naming convention of Professor Enderlein, Gaston Naessens and others has also been listed. When appropriate an AKA ("also known as") has been added with other biologists terminology.

Next Page>>>



Copyright 1998 All Rights Reserved