Dry Layer Oxidative Stress Test

Health care practitioners that use a microscope in their practice for patient education have a unique ability to observe the extent of free radical activity taking place in the body. This is through a procedure called the Dry Layer Oxidative Stress Test. It is very simple. A drop of blood from the finger tip is placed on a specimen slide in a series of layers. After the layers dry, they are observed under the microscope.

Blood is an interesting indicator of health and where free radicals are concerned, their activity impacts blood morphology. Putting it very simply, when free radicals attack cells, damage is done. The stuff that lies between cells and holds them together is the interstitium, or extra cellular matrix. Through free radical attack, cells get damaged, enzyme activity is altered, and the extra cellular matrix around the cells becomes compromised. Water soluble fragments of this matrix get into the blood stream and then alters the blood clotting cascade. With that done, we find that blood does not coagulate perfectly. This is one mechanism for altering a "normal" blood pattern.

Reading the dry layers of blood is like reading an ink blot. It can be very revealing as to the overall state of one's health. Blood from a healthy person will be uniform in coagulation, and tightly connected. From an individual with health problems and excess free radical activity, the dry layer blood profile will be disconnected, showing puddles of white (known as polymerized protein puddles). The more ill the patient with free radical/oxidative stress, the more disconnected is the dried layer of blood.

The image on the left is a dried layer of blood of a healthy individual. Notice how it is inter-connected with black connecting lines. The black interconnecting lines is a fibrin network. This is fibrinogen, one of the protein constituents of the blood. The red in-between the black lines are the red blood cells. The image to the right is of an individual who has cancer. Notice how the blood fails to coagulate completely and has many white areas. These are the polymerized protein puddles and they reflect oxidative stress. They represent the degradation of the body's extra cellular matrix from free radical activity. Since free radical activity has been implicated in nearly all disease processes, this test can be used as a quick reference to gauge the severity and extent of one's health problems.

Researchers have discovered certain biochemical pathways which create the free radical pathologies and leave their tell tale signs in the dry layer footprint of blood. Depending upon the nature of the degenerative disease, various patterns in the blood will unfold based upon the modifying substances inherent within that particular disease process. It is in this way that the dry layer oxidative stress test not only reveals the presence of free radical activity, but the nature of the disease which has resulted from that activity.

The most powerful aspect of this particular tool for any doctor is to assess whether the patient is really getting better, or whether their symptoms are just getting pushed around. When a patient is truly getting better, the doctor knows definitively through this microscopic examination. In the case of the cancer profile above, as the patient reverses their disease process, the white puddles will begin to fill back in with red blood cells. Subsequent tests will illustrate this event happening. If the patient is getting worse, the pattern will continue to degenerate.

There are many things you can learn from these tests. Just like reading live blood, reading dry layers can be considered an art. There is much more research, peer review and corroborated studies that need to be done in this area.

During this part of the course we will be using the "Oxidative Stress Test (OST)" scorecard. Under most of the indications, questions or causes are listed that can be pursued with the patient. These are listed to help point you in the right direction for a future diagnosis, or corroborate an existing diagnosis.

As we study this technique, we will go over the score card, blood gathering technique, special microscope set-up, and the color blood prints.

We will begin with an oral discussion of the theory of the test and will review the front page of the scorecard. We will then continue with the detail of the test as reviewed in the workbook. The blood slide preparation and microscope procedure will be given as hands-on learning in class.



Copyright 1998 All Rights Reserved